If it's not what You are looking for type in the equation solver your own equation and let us solve it.
30x^2-36x=0
a = 30; b = -36; c = 0;
Δ = b2-4ac
Δ = -362-4·30·0
Δ = 1296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1296}=36$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-36)-36}{2*30}=\frac{0}{60} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-36)+36}{2*30}=\frac{72}{60} =1+1/5 $
| 15x-31=53 | | Y=40x+2= | | 7+v=16 | | 12+4x=4x+3 | | x,x+15=45 | | -13=r+17 | | 13u-4u+16u-5-5=-20 | | -15=2t–112t-26 | | 1-3(-4v-8)=7v | | 1/5x13+x=1-9x+22 | | 13u−4u+16u−–5=–20 | | x+13=-20(6-x) | | 10+7n=-10+5n | | n=4.5=10.8 | | z=-25 | | -6x=-618 | | 7+9d=7d+6 | | -17n+18n+(-6n)+2n=18 | | 13=2z-3(z+4)=16 | | t=1/41/2t+3/8 | | -9+b=-32 | | 4.5x-13.7=17.8 | | 10+7n=–10+5n | | 4(x-2)+8-10x=12 | | x-11=4(2x+3)-2 | | 6-6x=10x+4 | | (13x-11)+(4x+1)=180 | | 2b-5=4b-11 | | -15n+10n+30-2n=-12 | | 10{x+4}=30 | | 3/8+c=-1/6 | | 2n-5=n+1/2 |